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The singlet dynamics, which plays a major role in the physics of the spin-1/2 quantum Heisenberg
antiferromagnet (QHAF) on the kagome lattice, can be approximately described by projecting onto the
nearest-neighbor valence bond (NNVB) singlet subspace. We revisit here the effective quantum dimer model,
which originates from the latter NNVB-projected Heisenberg model via a nonperturbative Rokhsar-Kivelson-like
scheme. By using Lanczos exact diagonalization on a 108-site cluster supplemented by a careful symmetry
analysis, it is shown that a previously found 36-site valence bond crystal (VBC) in fact competes with a new type
of 12-site “resonating-columnar” VBC. Interestingly, these two VBCs “emerge” in different topological sectors.
The exceptionally large degeneracy of the ground-state multiplets (144 on our 108-site cluster) and the proximity
of aZ2 dimer liquid have implications for the interpretation of numerical results on the QHAF, which are outlined.
The possibility of a chiral VBC (i.e., spontaneously breaking time-reversal symmetry) is also discussed.
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I. INTRODUCTION

The spin-1/2 quantum Heisenberg antiferromagnet
(QHAF) on the kagome lattice (see Fig. 1) is the paradigm
of frustrated quantum magnetism. Herbertsmithite1 is an
excellent experimental realization of such a kagome QHAF:
Copper atoms carrying spin-1/2 degrees of freedom interact-
ing antiferromagnetically are located on the sites of perfect
kagome layers. In addition, deviations from an exact QHAF
model like interlayer couplings, Dzyaloshinski-Moriya mag-
netic interactions,2 intrinsic impurities,3 etc., remain weak.
The absence of any magnetic ordering at the lowest attainable
temperatures4 is the hallmark of a nonmagnetically ordered
ground state as it may be realized in the ideal QHAF theoretical
model (see below). However, it is still difficult to say whether
the absence of a spin gap as inferred from the low-temperature
behavior of the susceptibility5 can also be interpreted as a
generic feature of the perfect (theoretical) QHAF or whether it
is due to an extrinsic perturbation, as one of those mentioned
above.

On the theoretical side, the proliferation of many low-
energy singlets revealed in early Lanczos exact diagonal-
izations (LEDs) of small clusters6 strongly suggests that a
nonmagnetically ordered phase could be stable in the kagome
QHAF. Spin liquids (SLs) preserving all symmetries, both
spin SU(2) and lattice translation, are the most fascinating
and challenging candidates. Algebraic SLs,7 or gapped SLs,8,9

could be realized. Recently, density-matrix renormalization-
group (DMRG) results10 on large kagome strips found strong
signals of a Z2 gapped SL. However, in variational Monte
Carlo (VMC) studies11 Z2 SLs (whose fermionic formulations
were recently proposed12) were found to have slightly higher
energy than the algebraic SLs.

Valence bond crystals (VBCs) are other exotic candidates
which, in contrast to SLs, spontaneously break the elementary
(three-site) unit-cell translation symmetry, hence realizing a
spontaneous (small) modulation characterized by a larger unit
cell (named here “supercell”). VBCs with 12-site,13 18-site,14

6-site,15 and 36-site14,16,17 supercells have all been proposed
in the literature as possible ground states (GSs) of the kagome

QHAF. Very schematically, a VBC is often drawn as a frozen
hard-core covering of the lattice by nearest-neighbor spin
singlets, so-called nearest-neighbor valence bonds (NNVBs).
In reality, strong quantum fluctuations are expected to severely
reduce the dimer order parameter. As shown in Fig. 1(a),
the 36-site VBC shows an hexagonal lattice of resonating
hexagons. It corresponds to a rather large 2

√
3 × 2

√
3 super-

cell. The six-site VBC exhibits a 2 × 1 supercell with columnar
dimer order as shown in Fig. 1(b). Both VBCs are of particular
interest in this study and we shall refer to them as columnar
VBCs (CVBCs) and hexagonal VBCs (HVBCs). In VMC
studies, a (fermionic) HVBC can be stabilized by a very small
next-NN ferromagnetic exchange coupling.18 The observation
of “diamond” patterns characteristic of the diamond VBC
(DVBC) displayed in Fig. 2(b) [deriving from the “parent”
VBC0 of Fig. 2(a)] was observed in recent DMRG10 studies.
Also, closely related to VBC0, the 12-site VBC of Ref. 13
shown in Fig. 2(c) displays a triangular lattice of resonating
“stars” and shall be denominated as star VBCs (SVBCs).

II. GENERALIZED QUANTUM DIMER MODEL

All these theoretical studies show that singlet dynamics
plays a major role in the low-energy physics of the spin-1/2
kagome QHAF. One possible route is therefore to approximate
the QHAF by projecting onto the NNVB singlet nonorthogo-
nal subspace.19 Starting from the NNVB-projected Heisenberg
model, an effective quantum dimer model (QDM) can be
constructed via a nonperturbative Rokhsar-Kivelson (RK) -like
scheme.20 This procedure bears the enormous advantage to
provide a mapping to an orthogonal hard-core dimer basis.
Details can be, e.g., found in Refs. 21 and 22. Note that,
although this method is certainly biased toward nonmagnetic
(quantum disordered) states since it starts from the projection
of the Heisenberg model onto the SU(2) short-range VB
basis (to some extent, this approximation is supported by the
earlier ED work on the kagome quantum AF19), generalized
QDMs are potentially able to stabilize equally well VBCs and
(gapped) dimer liquids ground states. In particular, it is known
that simple QDMs can have robust (topological) Z2 dimer
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FIG. 1. (Color online) Kagome lattices. The 108-site clusters
delimited by the (red) dashed lines are made of 6 × 6 unit cells
of three-site up triangles. Periodic boundaries are used. The four
topological sectors are determined by the parities of the number of
dimers (black thick bonds) cut by the three a-a, b-b, and c-c closed
loops along the three lattice directions shown (see text). For clarity,
the hard-core dimers are only shown along the three cuts. “Defect”
triangles with no dimers are left empty. (a) 2

√
3 × 2

√
3 (36-site)

HVBC showing resonating hexagons (shaded in green) and stars
(shaded in blue) in the [1,1,1] topological sector. (b) 2 × 1 (six-site)
CVBC with two types of up and two types of down triangles (all
colored differently) in the [0, 0,1] topological sector. The red stars
indicate the inversion (π -rotation) centers.

liquid phases (the hard-core dimer equivalent of the gapped
SL).23,24

Due to the orthogonal nature of the dimer basis, the kagome
effective QDM can be diagonalized (by the Lanczos algorithm)
on clusters up to 108 sites (6 × 6 three-site unit cells) providing
clear signatures of the HVBC and the proximity (in some
parameter space) of a quantum transition to a Z2 dimer
liquid.25 Note that, strictly speaking, in the QDM framework
the spinon (i.e., the elementary S = 1/2 magnetic excitation)
gap is pushed to infinity although some attempts have been
carried out to bring spinons back into the picture.26

A remarkable and useful feature of the effective QDM is that
it provides simple and direct access to topological properties
of the ground state, which is more involved in SU(2) models.
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FIG. 2. (Color online) VBC with 2 × 2 supercells in the [1,1,1]
topological sector of the periodic N = 108-site cluster. (a) VBC0

with four types of up (and down) triangles displayed with different
colors except the defect triangles left empty (degeneracy g = 8).
(b) The resonances of DVBC (colored diamonds) restore reflection
symmetry with respect to the vertical and horizontal directions but
suppress the π/3-rotation symmetry (g = 12). (c) SVBC has higher
symmetry than VBC0, resonating stars restoring reflection symmetry
with respect to the crystallographic axes (g = 4).

On a periodic torus the parity of the numbers of dimers
cut by two closed lines going along two orthogonal directions
across the torus is conserved by the QDM Hamiltonian, hence
defining four independent topological sectors. As clearly seen
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in the “toy” RK QDM defined in Ref. 23, the Z2 dimer liquid
is characterized by topological symmetry breaking with four
degenerate GSs, one in each topological sector. The Z2 SL
also carries (gapped) excitations, which are vortices of the
dimer field (visons). In a cluster with an even (odd) number of
sites, visons come in pairs25 (in odd numbers27). Interestingly,
a class of dimer liquid-VBC quantum phase transition can be
described by a specific field theory28 and has been observed

numerically by interpolating the Hamiltonian between the toy
RK QDM and the effective kagome QDM.25

In the present work, we shall use topological symmetry
extensively to revisit the effective QDM. From this refined
analysis, we find that the previously identified 36-site HVBC
competes with the new VBC.

We start here with the effective QDM derived in Ref. 22
[see Eq. (42) of this paper],

Heff /J = − 4
5

+
1
5

+
16
63

+ + +
2
63

+ +

− 16
255

+ + +
1

255
+ + + 0 +

(1)

The open diagrams correspond to kinetic processes around
closed loops of length 6 (hexagons), 8, 10, or 12 (stars). In
such a diagram, an alternating covering of (hard-core) dimers
on the loop (i.e., a dimer on every second bond) is moved
collectively by one step along the loop (i.e., it is “flipped”).
Each diagram includes of course the reverse flipping action.
Also, by definition, each diagram is meant for all (nonequal)
loops of the lattices with the same topology, i.e., obtained
under all possible translations, reflections, and rotations (i.e.,
under all elements of the space group of the lattice). The second
kind of diagrams (colored ones) are diagonal terms that simply
“count” the number of “flippable” loops of the first kind. More
details can be found, e.g., in Refs. 21 and 22. Note that, in
contrast to Ref. 25, Eq. (1) includes infinite order resummation
of all the processes (loops) restricted to a single hexagon. This,
however, only leads to very small changes of the values of the
coefficients of Heff compared to Ref. 25. Note also that the
stars have vanishing amplitudes at all orders.

III. TOPOLOGICAL PROPERTIES AND SYMMETRY
ANALYSIS

The generalized QDM is investigated by Lanczos exact
diagonalization of the finite 108-site cluster of the kagome
lattice made of 6 × 6 unit cells of three-site up triangles and
delimited by (red) dashed lines in Figs. 1 and 2. Periodic
boundary conditions are used in the horizontal a-a and b-b (at
60◦) directions so that the system is topologically equivalent to
a torus, providing global invariance under the translation group
T . On such a geometry, the generalized QDM Hamiltonian
bears interesting topological properties: its Hilbert space of
(orthogonal) NNVB hard-core coverings can be split in four
disconnected topological sectors, which are conserved by the
QDM Hamiltonian. To determine the topological sector of
a given dimer configuration, one simply needs to count the
number of dimers (black thick bonds) cut by the three a-a, b-b,
and c-c closed loops along the three lattice directions shown
in Figs. 1 and 2. We shall label these sectors as [α,β,γ ] where
α, β, and γ are 0 or 1 depending on whether the numbers
of dimers cut by the corresponding loops are even or odd,
respectively. Every cluster of P × P unit cells (with N = 3P 2

sites) contains a “symmetric” topological sector [α,α,α] with

α = 0 or α = 1 for P = 4p or P = 4p + 2, respectively.
Flipping the dimers along a closed loop that goes around the
torus, e.g., along the a-a direction, switches the parity of the
number of dimers cut in the two other directions, e.g., along b-b
and c-c. For the 108-site cluster of interest here, one can then
build the four topological sectors T0 = [1,1,1], T1 = [1,0,0],
T2 = [0,1,0], and T3 = [0,0,1]. All configurations of each
topological sector can be obtained separately by constructing
an initial dimer configuration belonging to the targeted sector
and then by applying recursively loop-flipping operators of the
type of Eq. (1) to generate (numerically) new configurations
until the Hilbert space is complete.

In order to block-diagonalize the Hamiltonian matrix in
each topological sector, one can make use of all space-
group symmetries leaving each sector globally invariant. The
corresponding point group G(Tα) depends on the topological
sector Tα . Note that we use here the center of the hexagon
as the common origin for all point-group elements. The full
point group G = C6v of the infinite lattice can be used for the
“fully symmetric” T0 = [1,1,1] topological sector. In contrast,
the 2π/3 rotation is lost in the T1 = [1,0,0], T2 = [0,1,0], and
T3 = [0,0,1] topological sectors so that the invariant point
group is reduced to G = C2v . Each of these three topological
sectors and their two corresponding (orthogonal) reflection
symmetry axes are related by 2π/3 and 4π/3 rotations.

In practice, one can specify a fixed momentum K in the
Brillouin zones (BZs) of Fig. 3 and diagonalize the Hamil-
tonian separately in all irreducible representations (IRREPs)
of its little group GK [which is defined by all the elements of
G(Tα) leaving K invariant in the BZ]. All little groups are listed
in Table I for the relevant K points of the N = 108 cluster. The
size of the Hilbert space (i.e., the number of orthogonal states)
can then be reduced from the full size 2N/3+1 � 137 × 109

by (i) a factor 4 for each topological sector, (ii) a factor
N/3 = 36 by using translation symmetry, and (iii) a factor
card{GK} (see Table I) by using point symmetry. Hence after
proper construction of the new “symmetrized” basis states in
each IRREP, the linear sizes of the corresponding Hamiltonian
“blocks” range from ∼80 × 106 (GK = C6v) to ∼960 × 106

(GK = Id). In the following, each IRREP will be labeled by
its momentum/topological sector according to Fig. 3 (different
combination of letters, subscripts, and superscripts are used to
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FIG. 3. (Color online) 36 available momenta of the 108-site
cluster (6 × 6 up triangles) in the first Brillouin zone. Topological
sectors have to be distinguished (as done on graph) because of their
different point groups (see text). Equivalent momenta are represented
by the same (filled) symbols. Translation by a reciprocal-lattice vector
(thin lines) of the momenta at the border of the first BZ are shown by
open symbols (correspond to the same momenta). The dashed lines
in (b) represent the two (orthogonal) reflection symmetry axes of the
C2v group.

distinguish all of them) and by the characters (r3,r2,σ ), which
refer to 2π/3 rotations, parity under inversion, and reflection
about the momentum direction, respectively, whenever such
symmetries are relevant (which depends on GK). For the center
of the BZ �, σ refers to the reflection along one of the lattice
directions (consistently with Ref. 29) while, for the center �∗,
it refers to the reflection along the axis perpendicular to the c

direction (i.e., along the momentum A1 in reciprocal space).

IV. SPONTANEOUS SYMMETRY BREAKING AND
DEGENERACIES OF VBCs

The spectrum of a system that spontaneously breaks
some lattice symmetries at zero temperature shows some
ground-state degeneracies. Moreover, these degeneracies oc-
cur between levels belonging to different IRREPs of the
lattice symmetry group. The simplest example is that of a
Z2 symmetry breaking, where a state that in the “even”
(topological) sector is degenerate with a state in the “odd”
sector. In a finite-size system these degeneracies are only
approximate, but they are expected to become exponentially
precise when increasing the system size. In turn, the presence
of degeneracies is almost always the indication of some
spontaneous symmetry breaking, and this type of signature

TABLE I. Little groups GK for all K momenta of Figs. 3(a) and
3(b) corresponding to the T0 = [1,1,1] and T3 = [0,0,1] topological
sectors, respectively.

K GK Card{GK} K GK Card{GK}
� C6v 12 B∗ Cv 2
A C2v 4 C1 Id 1
B C3v 6 C2 Cv 2
C Cv 2 D1 Cv 2
D Cv 2 D2 Id 1
E Cv 2 E1 Cv 2
F Id 1 E2 Id 1
�∗ C2v 4 F1 Id 1
A1 C2v 4 F2 Id 1
A2 CI 2 F3 Id 1

has been widely used in exact-diagonalization studies to detect
ordered phases.29

If one knows the VBC pattern/symmetry, it is relatively
easy to compute the IRREP that should appear in the ground-
state multiplet. Let us denote by |1〉, . . . |d〉 the states obtained
by putting the VBC pattern on the lattice in all the possible
positions/orientations. For a sufficiently large lattice they can
be considered as orthogonal to each other, and they transform
into each other under the action of the lattice symmetry group
G = G ⊗ T : for any symmetry g ∈ G and for any state |i〉,
there exists another state j = f (g,i) such that g|i〉 = |j 〉. We
assume in particular that the latter equation holds without any
phase factor. Such a ground-state multiplet defines nothing
but a (reducible) representation of dimension d of the group
G. Determining the associated ground-state quantum numbers
amounts to decomposing this representation over the IRREPs
of G, which is a standard task in group theory. If we denote
by ρ some IRREP of G, the number nρ of ground states that
should appear in the symmetry sector ρ is given by a character
formula:

nρ = 1

|G|
∑

g∈G

χρ(g−1)Tr|1〉,...|d〉(g), (2)

where χρ(g−1) is the character of ρ on the group element g−1,
|G| is the total number of symmetries, and Tr|1〉,...|d〉(g) is the
number of VBC states that are invariant under g: g|i〉 = |i〉.
The latter quantity only depends on the symmetries of the VBC
and not on the full wave function. It can therefore be computed
using “simplified” states with the correct symmetries. It can
sometimes be reduced to a single (nonresonant) covering,
or a linear combination of 2ncell coverings for resonating
states with ncell supercells (ncell = N/N ). In any case, from
the group characters χρ and the symmetries of the VBC,
the multiplicities nρ can be systematically computed and
compared to the spectrum obtained in LEDs.

We have computed these multiplicities for a few VBCs
with a 2 × 2 or 2 × 1 supercell on the 108-site cluster. These
multiplicities were obtained in a fixed topological sector, in
order to compare to the LED results (next section). To do so, the
lattice symmetry group was simply restricted to the elements
that conserve the topological sector, i.e., excluding 2π/3
rotations in the [0,0,1], [0,1,0], and [1,0,0] sectors. The results
are shown in Table II. The VBCs named CVBC is the simplest,
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TABLE II. Quantum numbers of the GS multiplet for VBC with m × n supercells of N = 3mn sites. The letters refer to the momenta
of Fig. 3 (with their multiplicities in brackets) in the two topological sectors [1,1,1] and [0, 0,1]. The character related to 2π/3 rotations
(r3 = 1,j,j 2), parity under inversion (r2 = +,−), and reflection about the momentum direction (σ = +,−) are denoted as (r3,r2,σ ). “±”
means that both even and odd GS are present and “×” stands for “symmetry not relevant” (e.g., 2π/3 rotation and hence r3 is irrelevant in the
[0, 0,1] topological sector). VBC0, DVBC, and SVBC are 8-fold, 12-fold, and 4-fold degenerate, respectively. CVBC, rVBC1, rVBC′

1, and
rVBC3 have the same degeneracy g = 8 in the [0, 0,1] sector, i.e., g = 8 × 3 = 24 including all three topological sectors while rVBC2 has
g = 16 × 3 = 48. The last line corresponds to the Z2 dimer liquid (g = 4).

VBC Cell � (×1) A (×3) �∗ (×1) A2 (×2) A1 (×1)

VBC0 2 × 2 (1, + ,±) (×, + ,±)
DVBC 2 × 2 (1, + ,+) (×, + ,+)a

(j, + ,×)b (×, + ,−)
SVBC 2 × 2 (1, + ,+) (×, + ,+)
CVBC 2 × 1 (×, ± ,±) (×, ± ,×)
rVBC2 2 × 2 (×, ± ,±) (×, ± ,×)a (×, ± ,±)
rVBC1 2 × 2 (×, ± ,+) (×, ± ,×) (×, ± ,+)
rVBC′

1 2 × 2 (×, + ,+) (×, ± ,×) (×, + ,+)
(×, − ,−) (×, − ,−)

rVBC3 2 × 2 (×, + ,±) (×, + ,×)a (×, + ,±)
VBC∗ 2 × 2 (×, + ,±) (×, + ,×)a (×, + ,±)
Z2 1 × 1 (1, + ,+) (×, + ,+)

aTwofold degenerate GS with this quantum number.
bTwofold degenerate IRREP (r3 = j and j 2).

since, as far as the symmetries are concerned, it can be reduced
to a single dimer covering. CVBC is displayed in Fig. 1(b), and
has first been proposed in Ref. 15. It has a 2 × 1 supercell and a
degeneracy equal to 8 (for each of the three topological sectors,
so 24 in total). The VBC0 of Fig. 2(a) can also be reduced to
a single dimer covering but, in contrast to the CVBC, belongs
to the [1.1,1] topological sector. Its degeneracy is 24. The
other VBCs we considered involve some resonance between
different dimer configurations. The rVBC2 [see Fig. 4(a)] can
be constructed from the CVBC configuration by applying some
resonance operators σx (notation of Ref. 23) on a quarter of
the hexagons [colored in blue in Fig. 4(a)], to shape a 2 × 2
supercell:

|rVBC2〉 =
∏

h=1,...,9

(
1 + ασx

h

)|CVBC〉.

Doing so simultaneously enlarges the supercell and doubles
the degeneracy (16). If the coefficient α is set to 1, one
restores a reflection symmetry (σ = +) and we get another
VBC, named |rVBC1〉 and with degeneracy 8. By applying the
resonance operators on the other hexagon sublattice [colored
in orange in Fig. 4(b)], one obtains another resonating VBC,
|rVBC′

1〉 shown in Fig. 4(b), with the same degeneracy (8)
but different quantum numbers (the symmetry axis is now that
of the wave vector B∗, i.e., along the c direction). Another
resonating crystal, |rVBC3〉 shown in Fig. 4(c), with no
reflection symmetry (in contrast to the previous ones) but
with inversion symmetry with respect to the centers of all the
hexagons, can also be constructed in the [0, 0,1] topological
sector but using longer range dimers. We believe there is a
similar VBC (that we name VBC∗) that bears exactly the same
symmetry property and which could be represented solely in
terms of (hard-core) NN dimers, probably requiring a more
involved resonance structure. Finally, the SVBC discussed in
Ref. 13 is made of resonating “stars” (12-dimer loops) and

also has a 2 × 2 supercell. Similarly, the DVBC is made
of resonating diamonds (eight-dimer loops). But unlike the
previous examples, these two crystals belong to the [1,1,1]
sector.

It appears that the trivial IRREP [�(+, + ,+) or �∗(×, + ,

+)] appears exactly once in all the VBCs we have listed so
far. This is in fact a general property of such kind of broken
symmetry phase. Indeed, the multiplicity of � is just a special
case of Eq. (2) where the character χ� is constant and equal to
unity. We thus have

n� = 1

|G|
∑

g∈G

Tr|1〉,...|d〉(g).

However, Tr|1〉,...|d〉(g) is nothing but the number of states that
are invariant under the symmetry g. So n� can be written using
the stabilizers Stab(i) or each state |i〉:

n� = 1

|G|
d∑

i=1

|Stab(i)|.

But since all the stabilizers have the same number of elements,
|Stab(i)| = |G|/d, we just find n� = 1. In Sec. VI this remark
will allow us to show that a particular multiplet of low-lying
states cannot be interpreted as a single conventional VBC.

V. NUMERICAL RESULTS

We have used the Lanczos exact-diagonalization technique
to obtain the low-energy spectra of the QDM Hamiltonian
in each IRREP. Computations have been performed on the
Altix SGI cluster at CALMIP (Toulouse), in particular on the
Altix UV node providing 96 CPUs allocating 1024 Gb of
fast access RAM. Typically, only 200 Lanczos iterations were
sufficient to get at least five or six of the lowest eigenenergies
(in each IRREP) with full machine (double) precision.30
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FIG. 4. (Color online) Resonant VBC with 2 × 2 supercells in
the [0, 0,1] topological sector of the periodic N = 108-site cluster.
Resonating ten-dimer (a),(c) and eight-dimer (b) loops (see text) are
represented by shaded areas. (a) When α = 1 (see text) a symmetry
axis perpendicular to the c direction is restored (light and dark green
triangles become equivalent). (b) The pattern exhibits a reflection
symmetry with respect to the c direction. (c) Inversion symmetry
with respect to the centers of all the hexagons is present. Dimers
beyond NNs have been used.
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FIG. 5. (Color online) (a) Low-energy spectrum of the 108-site
cluster in the T0 = [1,1,1] and T3 = [0,0,1] (degenerate with [0,1,0]
and [1,0,0]) topological sectors. Different symbols distinguish
different momenta and topological sectors [see Figs. 3(a) and 3(b)]
and IRREPs labeled as “(r3,r2,σ )” (see text). Only a few levels
corresponding to the onsets of the two continua (shaded areas) are
shown. (b) Zoom in of the (quasi)ground states. An Ising degeneracy
(see text) is reflected by the (almost) perfect equal spacings between
the HVBC ground states.

Figure 5(a) shows the obtained low-energy spectra at the most
relevant momenta and in the two topological sectors [1,1,1]
and [0, 0,1]. For each of these sectors, we can see a group
of quasidegenerate levels named “ground-state manifold” and
a dense accumulation of levels at higher energy. This clearly
reflects the presence of two continua of excited states above
two (slightly different) thresholds separated from the GS
manifolds by two gaps. Note that the energy spectra at the other
momenta (D, E, and F in Fig. 3) are not shown on this picture
since they only contain excited states beyond the gaps and
no level belonging to the ground-state manifold. Figure 5(b)
shows a zoom in of the ground-state manifold, which reveals
two subgroups corresponding to each topological sector.

In agreement with Ref. 25, the quantum numbers of the GS
levels in the “symmetric” [1,1,1] topological sector correspond
exactly to those predicted (see Ref. 29 for details) for the
36-site HCVB schematically shown in Fig. 1. In addition,
we find here some very remarkable (Ising-like) fine structure
with equally spaced subsubgroups of levels, which shall be
discussed later on. The numerical values of these eigenenergies
reported in Table III reveal almost exact degeneracies within
less than 10−5 (in units of the exchange constant J ).

The investigation of the [0, 0,1] and the two other equivalent
topological sectors was overlooked in Ref. 25. Interestingly,
Fig. 5(b) reveals a new subgroup of energy levels within ∼6 ×
10−3J from the [1,1,1] GS subgroup. Their energies are listed
in Table IV showing again almost perfect degeneracies within
subsubgroups of levels. The quantum numbers of these states
can be straightforwardly compared to the expected quantum
numbers for the VBC shown in Table II. Surprisingly, one
finds that the numerical results do not correspond to any single
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TABLE III. Quasidegenerate GSs classified according to the
IRREP of the C6v ⊗ T space group of the [1,1,1] topological sector
of the 108 cluster.

No. of No. of No. of GS Total
IRREP K states levels energy levels degen.a

� (1, + ,−) 1 79 548 096 2 −3.657 214 41 2
−3.649 849 41

� (1, + ,+) 1 79 548 096 2 −3.653 462 67 2
−3.646 352 04

A (×, + ,−) 3 238 642 176 2 −3.657 214 51 6
−3.649 849 60

A (×, + ,+) 3 238 642 176 2 −3.653 462 48 6
−3.646 351 92

B (1, × ,−) 2 159 073 536 2 −3.657 213 37 4
−3.649 849 46

B (1, × ,+) 2 159 073 536 2 −3.653 462 55 4
−3.646 352 03

C (×, × ,−) 6 477 218 560 2 −3.657 213 33 12
−3.649 849 58

C (×, × ,+) 6 477 218 560 2 −3.653 462 56 12
−3.646 351 92

aAn extra (exact) degeneracy of 2 is expected for each level (see text).

VBC. However, they correspond exactly to the reunion of the
GS multiplets of CVBC and VBC∗.

VI. DISCUSSIONS

Our results clearly show a close competition between two
(or even three) types of VBCs. We have checked that very small
changes of the Hamiltonian parameters can easily reverse the
relative position of the two subgroups of levels. Therefore
it is not clear which of these VBC will be stabilized in the
thermodynamic limit.

Let us first discuss the remarkable fine structure of the
GS manifold in the [1,1,1] topological sector. It reflects
the hidden Ising variable17 associated to the two possible
chiralities, say ↑ and ↓, of each of the resonating stars
(or pinwheels) of the HVBC. On our 108-site cluster three

TABLE IV. Quasidegenerate GS classified according to the
IRREP of the C2v ⊗ T space group of the [0,0,1] topological sector
of the 108 cluster.

No. of No. of No. of GS Total
IRREP K states levels energy levels degen.

�∗(×, + ,+) 1 238 613 056 2 −3.639 546 99 2
−3.639 460 27

�∗(×, + ,−) 1 238 613 056 2 −3.639 546 42 2
−3.639 458 83

�∗(×, − ,+) 1 238 613 056 1 −3.639 497 82 1
�∗(×, − ,−) 1 238 613 056 1 −3.639 495 81 1
A1 (×, + ,+) 1 238 605 760 1 −3.639 509 03 1
A1 (×, + ,−) 1 238 605 760 1 −3.639 509 00 1
A2 (×, + ,×) 2 477 218 816 3 −3.639 508 79 6

−3.639 508 60
−3.639 497 19

A2 (×, − ,×) 2 477 218 816 1 −3.639 496 79 2

such resonating stars can be fitted leading to 23 = 8 possible
configurations. The numerical spectrum can be explained by
assuming a (small) effective “magnetic” Ising field h, which
naturally provides splitting by energies −3h, −h, h, and
3h. Although this structure is relatively robust and does not
require real “fine tuning” of the effective model, the fact that
J12 = 0 is important. Indeed, when J12 is added by hand, the
numerical results can be simply interpreted by assuming a
(strong) linear dependance of the effective Ising field with
J12, h = h0 + AJ12, and h changes sign for a tiny (positive)
value of J12 ∼ 0.001. Similarly, a small value of J12 = ±0.01
increases the splitting within the GS manifold by a factor
∼5. The behavior in the thermodynamic limit (for J12 = 0)
depends crucially on whether the effective h0 is exactly zero
or retains a very small but still finite value. In the latter
(most probable) case, the absolute HVBC GS should exhibit
a uniform chirality of all resonating stars (one of the two
ferromagnetic Ising configurations) and the VBC gap should
be filled by a discrete set of energy levels corresponding to the
excitations of a finite number of resonating stars. In contrast, in
the unlikely case where h0 = 0 (due to fine tuning) the HVBC
GS would retain an infinite degeneracy.

Identifying the exact nature of the phase in the T1, T2,
and T3 topological sectors is more subtle. In fact, because of
two (GS) energy levels in the fully symmetric �∗(×, + ,+)
IRREP this phase cannot be described as a unique VBC. From
a direct comparison of the quantum numbers of the states in
the GS manifold with those listed in Table II, our numerical
data can indeed be interpreted as the simultaneous occurrence
of two very closely competing VBCs, the columnar CVBC
and the 2 × 2 VBC∗. Such a description, however, raises a
number of concerns. First, the exact nature of VBC∗ is not
fully known: it is similar to SVBC in terms of symmetry
properties but belongs to a different topological sector. A
naive representation in terms of a simple NN dimer covering
is therefore impossible and should involve subtle resonances
like rVBC1 or rVBC2. Second, we have checked that the
almost exact degeneracy between CVBC and VBC∗ is robust
and survives under small changes of the QDM Hamiltonian
parameters so that it does not correspond to any fine tunning.
This unconventional feature might have different origins: (i)
CVBC and VBC∗ are truly different but are related by some
hidden symmetry of the original projected Heisenberg model
or of its approximate effective model (1). (ii) The relevant
phase still corresponds to a unique VBC of smaller degeneracy
(3 × 8 = 24 instead of 3 × 16 = 48) but admits some form of
zero-energy excitations. It is interesting to note that Eq. (1)
only contains loops of different lengths but always involving
a single hexagon. It might be that smaller terms involving
longer loops (and hence at least two hexagons) could lift this
degeneracy. (iii) The observed degeneracy is the signature of
an ordered phase which is more complex than a VBC. We
could think, for instance, of some unconventional VBC with
broken time-reversal symmetry. Although it is not clear to us
how to construct precisely such a state, it may have n� = 2.
The tight competition between several VBCs in addition to the
existence of a Z2 dimer liquid stable very nearby in parameter
space25 are clear signatures of the highly frustrated nature
of the generalized QDM model, probably also generic in

214401-7
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several highly frustrated QHAFs. In fact, the observation in
recent DMRG studies of the kagome QHAF10 of signals of
the formation of crystalline diamond patterns together with
fingerprints of a Z2 spin liquid suggests that the QHAF and
the effective QDM might have strong similarities. In any case,
our results reveal an exceptionally large degeneracy of the
GS multiplet (96 + 48 = 144 on our 108-site cluster!) in all
topological sectors. If the same were to exist in a frustrated
QHAF, we believe the related LED and DMRG results might
become quite difficult to analyze. Incidentally, our study also
shows that the existence of quasidegenerate GSs in different
topological sectors (on the cylinder or on the torus) is not
sufficient to characterize a Z2 dimer (or spin) liquid, our result

providing a counterexample. However, it might be a signature
of the close proximity of the Z2 liquid in some enlarged
parameter space.25
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